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List of Elements with Their Symbols and Atomic Masses

Element Symbol
Atomic

Number
Atomic
Mass

Actinium Ac 89 227.03a

Aluminum Al 13 26.98
Americium Am 95 243.06a

Antimony Sb 51 121.76
Argon Ar 18 39.95
Arsenic As 33 74.92
Astatine At 85 209.99a

Barium Ba 56 137.33
Berkelium Bk 97 247.07a

Beryllium Be 4 9.012
Bismuth Bi 83 208.98
Bohrium Bh 107 264.12a

Boron B 5 10.81
Bromine Br 35 79.90
Cadmium Cd 48 112.41
Calcium Ca 20 40.08
Californium Cf 98 251.08a

Carbon C 6 12.01
Cerium Ce 58 140.12
Cesium Cs 55 132.91
Chlorine Cl 17 35.45
Chromium Cr 24 52.00
Cobalt Co 27 58.93
Copernicium Cn 112 285a

Copper Cu 29 63.55
Curium Cm 96 247.07a

Darmstadtium Ds 110 271a

Dubnium Db 105 262.11a

Dysprosium Dy 66 162.50
Einsteinium Es 99 252.08a

Erbium Er 68 167.26
Europium Eu 63 151.96
Fermium Fm 100 257.10a

Flerovium Fl 114 289a

Fluorine F 9 19.00
Francium Fr 87 223.02a

Gadolinium Gd 64 157.25
Gallium Ga 31 69.72
Germanium Ge 32 72.63
Gold Au 79 196.97
Hafnium Hf 72 178.49
Hassium Hs 108 269.13a

Helium He 2 4.003
Holmium Ho 67 164.93
Hydrogen H 1 1.008
Indium In 49 114.82
Iodine I 53 126.90
Iridium Ir 77 192.22
Iron Fe 26 55.85
Krypton Kr 36 83.80
Lanthanum La 57 138.91
Lawrencium Lr 103 262.11a

Lead Pb 82 207.2
Lithium Li 3 6.94
Livermorium Lv 116 292a

Lutetium Lu 71 174.97
Magnesium Mg 12 24.31
Manganese Mn 25 54.94

Element Symbol
Atomic

Number
Atomic
Mass

Meitnerium Mt 109 268.14a

Mendelevium Md 101 258.10a

Mercury Hg 80 200.59
Molybdenum Mo 42 95.95
Neodymium Nd 60 144.24
Neon Ne 10 20.18
Neptunium Np 93 237.05a

Nickel Ni 28 58.69
Niobium Nb 41 92.91
Nitrogen N 7 14.01
Nobelium No 102 259.10a

Osmium Os 76 190.23
Oxygen O 8 16.00
Palladium Pd 46 106.42
Phosphorus P 15 30.97
Platinum Pt 78 195.08
Plutonium Pu 94 244.06a

Polonium Po 84 208.98a

Potassium K 19 39.10
Praseodymium Pr 59 140.91
Promethium Pm 61 145a

Protactinium Pa 91 231.04
Radium Ra 88 226.03a

Radon Rn 86 222.02a

Rhenium Re 75 186.21
Rhodium Rh 45 102.91
Roentgenium Rg 111 272a

Rubidium Rb 37 85.47
Ruthenium Ru 44 101.07
Rutherfordium Rf 104 261.11a

Samarium Sm 62 150.36
Scandium Sc 21 44.96
Seaborgium Sg 106 266.12a

Selenium Se 34 78.97
Silicon Si 14 28.09
Silver Ag 47 107.87
Sodium Na 11 22.99
Strontium Sr 38 87.62
Sulfur S 16 32.06
Tantalum Ta 73 180.95
Technetium Tc 43 98a

Tellurium Te 52 127.60
Terbium Tb 65 158.93
Thallium Tl 81 204.38
Thorium Th 90 232.04
Thulium Tm 69 168.93
Tin Sn 50 118.71
Titanium Ti 22 47.87
Tungsten W 74 183.84
Uranium U 92 238.03
Vanadium V 23 50.94
Xenon Xe 54 131.293
Ytterbium Yb 70 173.05
Yttrium Y 39 88.91
Zinc Zn 30 65.38
Zirconium Zr 40 91.22

*b 113 284a

*b 115 288a
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PrefacePreface
To the Student
In this book, I tell the story of chemistry, a field of science that has not 
only revolutionized how we live (think of drugs designed to cure dis-
eases or fertilizers that help feed the world), but also helps us to under-
stand virtually everything that happens all around us all the time. The 
core of the story is simple: Matter is composed of particles, and the 
structure of those particles determines the properties of matter. Al-
though these ideas may seem familiar to you as a 21st-century student, 
they were not so obvious as recently as 200 years ago. Yet, they are among 
the most powerful ideas in all of science. You need not look any further 
than the advances in biology over the last half-century to see how the 
particulate view of matter drives understanding. In that time, we have 
learned how even living things derive much of what they are from the 
particles (especially proteins and DNA) that compose them. I invite you 
to join the story as you read this book. Your part in its unfolding is yet to 
be determined, but I wish you the best as you start your journey.

Nivaldo J. Tro
tro@westmont.edu

To the Professor
In recent years, some chemistry professors have begun teaching their 
General Chemistry courses with what is now called an atoms-first 
 approach. In a practical sense, the main thrust of this approach is a reor-
dering of topics so that atomic theory and bonding models come much 
earlier than in the traditional approach. A primary rationale for this ap-
proach is that students should understand the theory and framework be-
hind the chemical “facts” they are learning. For example, in the traditional 
approach students learn early that magnesium atoms tend to form ions 
with a charge of 2+. However, they don’t understand why until much later 
(when they get to quantum theory). In an atoms-first approach, students 
learn quantum theory first and understand immediately why magnesium 
atoms form ions with a charge of 2+. In this way, students see chemistry 
as a more coherent picture and not just a jumble of disjointed facts.

From my perspective, the atoms-first movement is better 
 understood—not in terms of topic order—but in terms of emphasis. 
Professors who teach with an atoms-first approach generally emphasize: 
(1) the particulate nature of matter; and (2) the connection between the 
structure of atoms and molecules and their properties (or their function). 
The result of this emphasis is that the topic order is rearranged to make 
these connections earlier, stronger, and more often than is possible with 
the traditional approach. Consequently, I have chosen to name this 
book Chemistry: Structure and Properties, and I have not included the 
phrase atoms-first in the title. From my perspective, the topic order 
grows out of the particulate emphasis, not the other way around.

In addition, by making the relationship between structure and 
properties the emphasis of the book, I extend that emphasis beyond just 
the topic order in the first half of the book. For example, in the chapter 
on acids and bases, a more traditional approach puts the relationship 
between the structure of an acid and its acidity toward the end of the 
chapter, and many professors even skip this material. In contrast, in this 
book, I cover this relationship early in the chapter, and I emphasize its 
importance in the continuing story of structure and properties.  Simi-
larly, in the chapter on free energy and thermodynamics, a traditional 
approach does not put much emphasis on the relationship between mo-
lecular structure and entropy.  In this book, however, I emphasize this 
relationship and use it to tell the overall story of entropy and its ulti-
mate importance in determining the direction of chemical reactions.

Throughout the course of writing this book and in conversations 
with many of my colleagues, I have also come to realize that the atoms-
first approach has some unique challenges.  For example, how do you 
teach quantum theory and bonding (with topics like bond energies) 
when you have not covered thermochemistry? Or how do you find 
laboratory activities for the first few weeks if you have not covered 
chemical quantities and stoichiometry? I have sought to develop solu-
tions to these challenges in this book. For example, I have included a 
section on energy and its units in Chapter 2. This section introduces 
changes in energy and the concepts of exothermicity and endothermi-
city. These topics are therefore in place when you need them to discuss 
the energies of orbitals and spectroscopy in Chapter 3 and bond ener-
gies in Chapter 6. Similarly, I have introduced the mole concept in 
Chapter 2; this placement allows not only for a more even distribution 
of quantitative homework problems, but also for laboratory exercises 
that require the use of the mole concept. In addition, because I strongly 
support the efforts of my colleagues at the Examinations Institute of 
the American Chemical Society, and because I have sat on several com-
mittees that write the ACS General Chemistry exam, I have ordered 
the chapters in this book so that they can be used with those exams in 
their present form. The end result is a table of contents that empha-
sizes structure and properties, while still maintaining the overall tradi-
tional division of first- and second-semester topics.

For those of you who have used my other General Chemistry book 
(Chemistry: A Molecular  Approach), you will find that this book is a bit 
shorter and more focused and streamlined. I have shortened some 
chapters, divided others in half, and completely eliminated three chap-
ters (Biochemistry, Chemistry of the Nonmetals, and Metals and Met-
allurgy). These topics are simply not being taught much in most 
General Chemistry courses. Chemistry: Structure and Properties is a 
leaner and more efficient book that fits well with current trends that 
emphasize depth over breadth. Nonetheless, the main features that 
have made Chemistry: A Molecular Approach a success continue in this 
book. For example, strong problem-solving pedagogy, clear and concise 
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writing, mathematical and chemical rigor, and dynamic art are all vital 
components of this book.

I hope that this book supports you in your vocation of teaching 
students chemistry. I am increasingly convinced of the importance of 
our task.  Please feel free to e-mail me with any questions or comments 
about the book.

Nivaldo J. Tro
tro@westmont.edu

The Development Story
A great textbook starts with an author’s vision, but that vision and its imple-
mentation must be continuously tested and refined to ensure that the book 
meets its primary goal—to teach the material in new ways that result in 
improved student learning. The development of a first edition textbook is 
an arduous process, typically spanning several years.  This process is neces-
sary to ensure that the content and pedagogical framework meet the educa-
tional needs of those who are in the classroom: both instructors and students.

The development of Dr. Tro’s Structure and Properties was accom-
plished through a series of interlocking feedback loops. Each chapter 
was drafted by the author and subjected to an initial round of internal 
developmental editing, with a focus on making sure that the author’s 
goal of “emphasizing the particulate nature of matter” was executed in 
a clear and concise way.

The chapters were then revised by the author and exposed to intensive 
reviewer scrutiny. We asked over 150 reviewers across the country to define 
what teaching with an atoms-first approach meant to them and to focus on 
how that philosophy was executed in Chemistry: Structure and Properties. 
They were also asked to analyze the table of contents and to read each 
chapter carefully. We asked them to evaluate the breadth and depth of 
coverage, the execution of the art program, the worked examples, and the 
overall pedagogical effectiveness of each chapter. The author and the de-
velopment editor then worked closely together to analyze the feedback and 
determine which changes were necessary to improve each chapter.

In addition to reviews, we hosted six focus groups where professors 
scrutinized the details of several chapters and participated in candid 
group discussions with the author and editorial team. These group 
meetings not only focused on the content within the book, but also 
provided the author and participants with an opportunity to discuss the 
challenges they face each day in the classroom and what the author and 
the publisher could do to address these concerns in the book and with-
in our media products. These sessions generated valuable insights that 
would have been difficult to obtain in any other way and were the in-
spiration for some significant ideas and improvements.

Class-Tested and Approved
General Chemistry students across the country also contributed to the 
development of Chemistry: Structure and Properties. Over 2000 students 
provided feedback through extensive class testing prior to publication. 
We asked students to use the chapters in place of, or alongside, their 
current textbook during their course. We then asked them to evaluate 
numerous aspects of the text, including how it explains difficult topics; 
how clear and understandable the writing style is; if the text helped 
them to see the “big picture” of chemistry through its macroscopic-to-
microscopic organization of the material; and how well the Interactive 
Worked Examples helped them further understand the examples in the 
book. Through these student reviews, the strengths of Chemistry: Struc-
ture and Properties were put to the test, and it passed. Overwhelmingly, 

the majority of students who class tested would prefer to use Chemistry: 
Structure and Properties over their current textbook in their General 
Chemistry course!

In addition, our market development team interviewed over 75 
General Chemistry instructors, gathering feedback on how well the 
 atoms-first approach is carried out throughout the text; how well the 
text builds conceptual understanding; and how effective the end-of-
chapter and practice material is. The team also reported on the accuracy 
and depth of the content overall. All comments, suggestions, and cor-
rections were provided to the author and editorial team to analyze and 
address prior to publication.
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Dear Colleague: 
In recent years, many chemistry professors have begun teaching 

their General Chemistry courses with what is now called an atoms-

frst approach. On the surface, this approach may seem like a mere 

reordering of topics, so that atomic theory and bonding theories 

come much earlier than in the traditional approach. A rationale for 

this reordering is that students should understand the theory and 

framework behind the chemical “facts” they are learning. For example, 

in the traditional approach students learn early that magnesium atoms 

tend to form ions with a charge of 2+. However, they don’t understand 

why until much later (when they get to quantum theory). In an atoms-

first approach, students learn quantum theory first and understand 

immediately why magnesium atoms form ions with a charge of 2+.  

In this way, students see chemistry as a more coherent picture and  

not just a jumble of disjointed facts.

 From my perspective, however, the atoms-frst movement is much  

more than just a reordering or topics. To me, the atoms-frst movement is  

a result of the growing emphasis in chemistry courses on the two main ideas  

of chemistry: a) that matter is particulate, and b) that the structure of those  

particles determines the properties of matter. In other words, the atoms-first 

movement is—at its core—an attempt to tell the story of chemistry in a more 

unified and thematic way. As a result, an atoms-first textbook must be more 

than a rearrangement of topics: it must tell the story of chemistry through  

the lens of the particulate model of matter. That is the book that I present to 

you here. The table of contents reflects the ordering of an atoms-first approach, 

but more importantly, the entire book is written and organized so that the 

theme—structure determines properties—unifies and animates the content.  

My hope is that students will see the power and beauty of the simple  

ideas that lie at the core of chemistry, and that they may learn to apply  

them to see and understand the world around them in new ways.    

“MMMy hope is that 

students will see  

the power and 

beauty of the simple 

ideas that lie at the 

core of chemistry.” 

                             Niva
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What Instructors are Saying:
Tis book is exactly what I have been looking for in a book. It has what I would consider the perfect order of 

topics. It has a true atoms-frst approach. 

Ken Friedrich — Portland Community College

Chemistry: Structures and Properties is a student-friendly text, ofering a pedagogically sound treatment of an 

atoms frst approach to chemistry. With its well-written text, supporting fgures and worked examples, students 

have access to a text possessing the potential to maximize their learning. 

Christine Mina Kelly — University of Colorado

It is an outstanding, very well written text that nails the “atoms-frst” approach. Te book is clear, concise and 

entertaining to read. 

Richard Mullins — Xavier University

Dr. Tro takes excellent artwork, excellent worked examples, and excellent explanations and combines them in an 

Atoms First General Chemistry book that raises the bar for others to follow. 

John Kiser — Western Piedmont Community College

Niva Tro presents the science of chemistry using a very warm writing style and approach that connects well  

with both the student and scientist reader.

Amina El-Ashwamy/Collin County CC

150 Peer reviewers  

who scrutinized each chapter and provided feedback on everything from content and organization to  

art and pedagogy.

75 Instructors  

who tested chapters in their own classrooms and advised how students interacted  

with and learned from the content.

50 Focus Group Participants  

who joined Dr. Tro and the editorial team for in-person candid discussions on the challenges they face in their 

classrooms and how we could address those challenges in the book and within our media products.

Structure and Properties was developed with the goal of presenting the story of chemistry in a unified way.  

To ensure that the book consistently emphasizes the theme  —structure determines properties— 

Dr. Tro consulted a community of general chemistry instructors teaching with an atoms-first approach.



What Students are Saying:
“Tis sample is really unlike any chemistry book I’ve ever seen.  

Te examples and breakdowns of problems were awesome. Te concepts are clear and down to earth.  

Tis book just makes it seem like the author really wants you to get it.”

Kenneth Bell — Colorado School of Mines

 “It is the best text I’ve read that clearly and concisely presents chemistry concepts in a fun and  

organized way!”

Peter Inirio — Marywood University 

 “I think that sometimes in chemistry, it’s very hard to see the “big picture.”  

I thought that this textbook did a great job with that by organizing the material and making me think 

about how it relates to real life.” 

Megan Little — University of Massachusetts Lowell 

“I really enjoyed how this chapter/author doesn’t assume your knowledge of prerequisite material.  

Going from macro to micro allows the reader/student to truly conceptualize all aspects of the material. 

Te organization and step-by-step approach delivers the chapter in a simple yet thorough manner.  

Tis booklet helped me tremendously, thank you.”

Meghan Berthold — Collin County Community College

 “Students need to learn chemistry in a way that is not intimidating. My current textbook had language 

that was too advanced for a beginner. Tis book was a fresh breath of air that made me relax and 

understand the topics better than ever before.”

Megan Van Doren — Bloomsburg University

“It was very similar to a classroom format, giving me the confdence to solve problems on my own.”

Zachary Ghalayini — University of South Florida

2,000 
Student Class Testers 

In addition to peer reviews, general chemistry students across the country also contributed  

to the development of Chemistry: Structure and Properties.  

Students were asked to use chapters in place of, or alongside, their current textbook during their  

course and provide feedback to the author and editorial team.
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1.1 A Particulate View of the World: Structure  
Determines Properties

A good novel usually has a strong premise—a short statement that describes the central idea of the story. Te 
story of chemistry as described in this book also has a strong premise, which consists of two simple statements:

1. Matter is particulate—it is composed of particles.
2. e of those particles determines the properties of matter.

Matter is anything that occupies space and has mass. Most things you can think of—such as this book, 
your desk, and even your body—are composed of matter. Te particulate nature of matter—frst  

G REAT ADVANCES IN SCIENCE occur not 

only when a scientist sees something new, but 

also when a scientist sees something everyone 

else has seen in a new way. That is what happened in 1869 

when Dmitri Mendeleev, a Russian chemistry professor, saw 

a pattern in the properties of elements. Mendeleev’s insight 

led to the development of the periodic table. Recall from 

Chapter 1 that theories explain the underlying reasons for 

observations. If we think of Mendeleev’s periodic table as a 

compact way to summarize a large number of observations, then quantum mechanics is the 

theory that explains the underlying reasons. Quantum mechanics explains how electrons are 

arranged in an element’s atoms, which in turn determines the element’s properties. Because 

the periodic table is organized according to those properties, quantum mechanics elegantly 

accounts for Mendeleev’s periodic table. In this chapter, we see a continuation of this book’s 

theme—the properties of matter (in this case, the elements in the periodic table) are explained 

by the properties of the particles that compose them (in this case, atoms and their electrons).

 4.1 Aluminum: Low-Density Atoms Result 
in Low-Density Metal   101

 4.2 Finding Patterns: The Periodic Law 
and the Periodic Table   102

 4.3 Electron Confgurations: How 
Electrons Occupy Orbitals   105

 4.4 Electron Confgurations, Valence 
Electrons, and the Periodic  
Table   112

 4.5 How the Electron Confguration of an 
Element Relates to Its Properties   116

 4.6 Periodic Trends in the Size of Atoms 
and Effective Nuclear Charge   119

 4.7 Ions: Electron Confgurations, 
Magnetic Properties, Ionic Radii, and 
Ionization Energy   124

 4.8 Electron Affnities and Metallic 
Character   132

Key Learning Outcomes   137

Periodic Properties 
of the Elements

4.1 Aluminum: Low-Density Atoms Result in  
Low-Density Metal

Look out the window from the middle of any commercial aircraft and you will see the large sheets of alumi-
num that compose the aircraft’s wing. In fact, the majority of the plane is most likely made out of aluminum. 
Aluminum has several properties that make it suitable for airplane construction, but among the most impor-
tant is its low density. Aluminum has a density of only 2.70 g/cm3. For comparison, iron’s density is  
7.86 g/cm3, and platinum’s density is 21.4 g/cm3. Why is the density of aluminum metal so low?

Te densities of elements and the radii of their atoms are examples of periodic properties. A peri-
odic property is one that is generally predictable based on an element’s position within the periodic 
table. In this chapter, we examine several periodic properties of elements, including atomic radius, 
ionization energy, and electron afnity. As we do,  we will see that these properties—as well as the 
overall arrangement of the periodic table—are explained by quantum-mechanical theory, which we 
frst examined in Chapter 3. Quantum-mechanical theory explains the electronic structure of atoms—this in 
turn determines the properties of those atoms.

4.5 How the Electron Configuration of an Element 
Relates to Its Properties

As we discussed in Section 4.4, the chemical properties of elements are largely determined by the number of 
valence electrons they contain. Te properties of elements are periodic because the number of valence 
electrons is periodic. Mendeleev grouped elements into families (or columns) based on observations 
about their properties. We now know that elements in a family have the same number of valence elec-
trons. In other words, elements in a family have similar properties because they have the same number 
of valence electrons.

Unifying Theme of Structure  
and Properties
Section 1.1 – Introduction to the theme

Section 4.1 – How the structure of Al atoms determines  
the density of aluminum metal

Section 4.5 – How atomic structure 
determines the properties of the elements



Morphine binds to opioid receptors because it fts into a special pocket (called the active site) on 
the opioid receptor protein (just as a key fts into a lock) that normally binds endorphins. Certain parts 
of the morphine molecule have a similar enough shape to endorphins that they ft the lock (even 
though they are not the original key). In other words, morphine is a molecular imposter, mimicking the 
action of endorphins because of similarities in shape.

6.10 Molecular Shape and Polarity

In Section 6.2, we discussed polar bonds. Entire molecules can also be polar, depending on their shape 
and the nature of their bonds. For example, if a diatomic molecule has a polar bond, the molecule as a 

High electron
density

Low electron
density

ClH

Polar bond

maps, red areas indicate electron-rich regions in the molecule and the blue areas indicate electron-poor 
regions. Yellow indicates moderate electron density. Notice that the region around the more 

whole will be polar.

Net dipole moment
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CHAPTER

 6 Chemical Bonding I
Drawing Lewis Structures and 
Determining Molecular 
Shapes

Morphinan (a morphine analog) binding to an opiod receptor (based on 
research done by Kobilka and co-workers at Stanford University). 
Morphine is derived from the sap of the opium poppy.

C HEMICAL BONDING IS AT THE HEART 

of chemistry. In this book, we examine three 

different theories for chemical bonding. 

Recall from Section 5.4 that bonding theories explain why 

atoms bond together to form molecules and predict many of 

the properties (such as the shape) of molecules. Therefore, 

bonding theories play an important role in helping us to 

see the relationship between the structure of a molecule 

and its properties. The first and simplest bonding theory 

is the Lewis model, which we introduced in Chapter 5 and expand upon in this chapter. With 

just a few dots, dashes, and chemical symbols, the Lewis model can help us to understand 

and predict a myriad of chemical observations. The Lewis model, combined with a theory 

called valence shell electron pair repulsion theory (VSEPR), allows us to predict the shapes of 

molecules. The other two bonding theories are valence bond theory and molecular orbital 

theory, which we will cover in Chapter 7. 

Chemical Bonding I
Drawing Lewis Structures and
Determining Molecular 
Shapes

A geometrical and 

mechanical basis of the 

physical science cannot be 

contructed until we know 

the forms, sizes, and 

positions of the molecules 

of substances.

—George Gore (1826–1908)

 6.1 Morphine: A Molecular Imposter  189

 6.2 Electronegativity and Bond 
Polarity  190

 6.3 Writing Lewis Structures for Molecular 
Compounds and Polyatomic Ions  194

 6.4 Resonance and Formal Charge  196

 6.5 Exceptions to the Octet Rule: Odd-
Electron Species, Incomplete Octets, 
and Expanded Octets  201

 6.6 Bond Energies and Bond Lengths  204

 6.7 VSEPR Theory: The Five Basic 
Shapes  207

 6.8 VSEPR Theory: The Effect of Lone 
Pairs  211

 6.9 VSEPR Theory: Predicting Molecular 
Geometries  215

 6.10 Molecular Shape and Polarity  219

Key Learning Outcomes  225

6.1 Morphine: A Molecular Imposter

Morphine—a drug named after Morpheus, the Greek god of dreams—is the silver bullet in the human 
arsenal against pain. Morphine is often prescribed after surgery to aid recovery or to alleviate the severe 
pain associated with illnesses such as cancer. It is also prescribed to patients who have chronic pain to-
ward the end of their lives. For these patients, prescribed morphine provides relief from an otherwise 
tortuous existence.

Section 6.1 – How the structure of morphine allows it to be 
a molecular imposter for the body’s natural endorphins

Section 6.10 – How molecular structure determines 
whether a substance is polar or nonpolar
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12.1 Structure Determines Properties

Ethanol and dimethyl ether are isomers—they have the same chemical formula, C2H6O but are difer-
ent compounds. In ethanol, the nine atoms form a molecule that is a liquid at room temperature (boils 
at 78.3 °C). In dimethyl ether, the atoms form a molecule that is a gas at room temperature (boils at 
-22.0 °C). How can the same nine atoms bond together to form molecules with such diferent  properties? 
By now, you should know the answer—the structures of these two molecules are diferent, and structure 
determines properties.

Structure and Properties: 
Unified Theme Carries 
through the Second Semester
Section 12.1 – How ethanol and dimethyl ether are composed 
of exactly the same atoms, but their different structures result 
in different properties

441

CHAPTER

12 Liquids, Solids, and 
Intermolecular 
Forces

Ethanol and dimethyl ether are isomers—they have the same chemical formula, C2H6O but different structures.  
In ethanol, the nine atoms form a molecule that is a liquid at room temperature. In dimethyl ether, however, the  
same 9 atoms atoms form a molecule that is a gas at room temperature.

12.1 Structure Determines Properties

Ethanol and dimethyl ether are isomers—they have the same chemical formula, C2H6O but are differ-
ent compounds. In ethanol, the nine atoms form a molecule that is a liquid at room temperature (boils 
at 78.3 °C). In dimethyl ether, the atoms form a molecule that is a gas at room temperature (boils at 
-22.0 °C). How can the same nine atoms bond together to form molecules with such different  properties? 
By now, you should know the answer—the structures of these two molecules are different, and structure 
determines properties.

R ECALL FROM CHAPTER 1 that matter 

exists primarily in three states (or phases): 

solid, liquid, and gas. In Chapter 11, we 

examined the gas state. In this chapter and the next we 

turn to the liquid and solid states, known collectively 

as the condensed states. The liquid and solid states are 

more similar to each other than they are to the gas state. In the gas state, the constituent 

particles—atoms or molecules—are separated by large distances and do not interact with 

each other very much. In the condensed states, the constituent particles are close together 

and exert moderate to strong attractive forces on one another. Whether a substance is a 

solid, liquid, or gas depends on the structure of the particles that compose the substance. 

Remember the theme we have emphasized since Chapter 1 of this book: The properties of 

matter are determined by the properties of the particles that compose it. In this chapter, we 

will see how the structure of a particular atom or molecule determines its state at a given 

temperature.

“It’s a wild dance floor 

there at the molecular 

level.”

—Roald Hoffmann (1937–)
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17.4 Acid Strength and Molecular Structure

We have learned that a Brønsted–Lowry acid is a proton 1H+2 donor. Now we explore why some
hydrogen-containing molecules act as proton donors while others do not. In other words, we want to
explore how the structure of a molecule afects its acidity. Why is H2S acidic while CH4 is not? Or why is
HF a weak acid while HCl is a strong acid? We divide our discussion about these issues into two
categories: binary acids (those containing hydrogen and only one other element) and oxyacids (those
containing hydrogen bonded to an oxygen atom that is bonded to another element).

19.4 Predicting Entropy and Entropy Changes for
Chemical Reactions

We now turn our attention to predicting and quantifying entropy and entropy changes in a sample of
matter. As we examine this topic, we again encounter the theme of this book: structure determines prop-
erties. In this case, the property we are interested in is entropy. In this section we see how the structure
of the particles that compose a particular sample of matter determines the entropy that the sample pos-
sesses at a given temperature and pressure.

Section 15.2 – How reaction rates depend of the structure of the 
reacting particles

Section 17.4 – How the structure of an acid determines its strength

Section 19.4 – How the structure of a molecule determines its entropy

A
A B
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Key Concept Videos 

and Interactive Worked 

Examples digitally bring 

Dr. Tro’s award winning 

teaching directly to 

students.

In these highly 

conceptual videos, the 

author visually explains 

key concepts within each 

chapter and engages 

students in the learning 

process by asking them 

to answer embedded 

questions.

Scan this QR code 

(located on the back  

cover of the textbook) 

with your smartphone  

to access the  

Key Concept videos.

Key Concept Videos
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PROCEDURE FOR ▼

Solving Problems  
Involving Equations

SORT Begin by sorting the information  
into given and f ind.

STRATEGIZE Write a conceptual plan for 

you from the given
the f ind

you use the geometrical relationships given in 
the problem statements as well as the 
definition of density, d = m/V, which you 
learned in this chapter.

SOLVE Follow the conceptual plan. Solve 
f ind

not solved already). Gather each of the 

the correct units. (Convert to the correct 
units if necessary.) Substitute the numerical 

and calculate the answer.

Round the answer to the correct number of 
significant figures.

CHECK Check your answer. Are the units 
correct? Does the answer make sense?

EXAMPLE 2.8
Problems with Equations

Find the density (in g/cm3) of a metal 
cylinder with a mass (m) of 8.3 g, a 
length (l) of 1.94 cm, and a radius (r) of 
0.55 cm. For a cylinder, V = pr2l.

GIVEN: m = 8.3 g
l = 1.94 cm
r = 0.55 cm

FIND: d in g/cm3

CONCEPTUAL PLAN

Vl,r

V = πr2l

dm,V
d = m/V

RELATIONSHIPS USED

V = pr2l
d =

m
V

SOLUTION
 V = pr2l

 = p(0.55 cm)2(1.94 cm)

 = 1.8436 cm3

 d =
m
V

 =
8.3 g

1.8436 cm3 = 4.50195 g/cm3

4.50195 g/cm3 = 4.5 g/cm3

The units (g/cm3) are correct. The 
magnitude of the answer seems correct for 
one of the lighter metals (see Table 2.1).

FOR PRACTICE 2.8

Find the density, in g/cm3, of a metal 
cube with a mass of 50.3 g and an edge 
length (l) of 2.65 cm. For a cube, V = l3.

EXAMPLE 2.7
Problems with Equations

Find the radius (r), in centimeters, of a 
spherical water droplet with a volume (V) 
of 0.058 cm3. For a sphere, V = (4/3)pr3.

GIVEN: V = 0.058 cm3

FIND: r in cm

CONCEPTUAL PLAN

π r3V =
4

3

rV

RELATIONSHIPS USED

V =
4

3
 pr3

SOLUTION

 V =
4

3
 pr3

 r3 =
3

4p
V

 r = a
3

4p
Vb

1>3

 = a
3

4p
 0.058 cm3b

1>3

 = 0.24013 cm

0.24013 cm = 0.24 cm

The units (cm) are correct, and the 
magnitude makes sense.

FOR PRACTICE 2.7

Find the radius (r) of an aluminum cylin-
der that is 2.00 cm long and has a mass of 
12.4 g. For a cylinder, V = πr2l.

Interactive Worked 

Examples are digital 

versions of the text’s worked 

examples that make Tro’s 

unique problem-solving 

strategies interactive,  

bringing his award-winning 

teaching directly to all 

students using his text.  

In these digital versions, 

students are instructed how  

to break down problems  

using Tro’s proven technique. 

These examples and videos  

are often paired and can  

be accessed by scanning the 

QR code on the back cover 

allowing students to quickly 

access an office-hour type 

experience. These problems  

are incorporated into 

MasteringChemistry® as 

assignable activities, and are 

also available for download 

via the Instructor Resource 

Center for instructional and 

classroom use.

Interactive Worked Examples
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SELF-ASSESSMENT

Quiz
 6. Which set of three quantum numbers does not specify an orbital 

in the hydrogen atom?
a) n = 2; l = 1; ml = -1 b) n = 3; l = 3; ml = -2
c) n = 2; l = 0; ml = 0 d) n = 3; l = 2; ml = 2

 7. Calculate the wavelength of light emitted when an electron in 
the hydrogen makes a transition from an orbital with n = 5 to 
an orbital with n = 3.
a) 1.28 * 10-6 m b) 6.04 * 10-7 m
c) 2.28 * 10-6 m d) 1.55 * 10-19 m

 8. Which electron transition produces light of the highest 
frequency in the hydrogen atom?
a) 5p ¡ 1s b) 4p ¡ 1s
c) 3p ¡ 1s d) 2p ¡ 1s

 9. How much time (in seconds) does it take light to travel 1.00 
billion km?
a) 3.00 * 1017 s b) 3.33 s
c) 3.33 * 103 s d) 3.00 * 1020 s

 10. W d orbital?
a)  b) 

c)  d) None of the above

 1. Which wavelength of light has the highest frequency?
a) 10 nm b) 10 mm c) 1 nm d) 1 mm

 2. Which kind of electromagnetic radiation contains the greatest 
energy per photon?
a) Microwaves b) Gamma rays
c) X-rays d) Visible light

 3. How much energy (in J) is contained in 1.00 mole of 552-nm 
photons?
a) 3.60 * 10-19 J b) 2.17 * 105 J
c) 3.60 * 10-28 J d) 5.98 * 10-43 J

 4. Light fr

Laser A produces no photoelectrons. Lasers B and C both 
produce photoelectrons, but the photoelectrons produced by 
laser B have a greater velocity than those produced by laser C. 
Arrange the lasers in order of increasing wavelength.
a) A 6 B 6 C b) B 6 C 6 A
c) C 6 B 6 A d) A 6 C 6 B

 5. Calculate the frequency of an electron traveling at  
1.85 * 107 m/s.
a) 1.31 * 10-19 s-1 b) 1.18 * 10-2 s-1

c) 3.93 * 10-11 s-1 d) 7.63 * 1018 s-1

Answers: 1:c; 2:b; 3:b; 4:b; 5:d; 6:b; 7:a; 8:a; 9:c; 10:b 

Self-Assessment Quizzes 

Niva Tro actively participates on the ACS Exams Committee for Gen 

Chem I, Gen Chem II and full year exams. Tro’s Self-Assessment Quizzes 

at the end of each chapter contain 10-15 multiple-choice questions that are 

similar to those found on the ACS exam and on other standardized exams.  

The Self-Assessment Quizzes are also assignable in MasteringChemistry®.

Linking the Conceptual 
with the Quantitative



EXAMPLE 9.1
Calculating Solution Concentration

If you dissolve 25.5 g KBr in enough water to make 1.75 L of solution, what is the  
molarity of the solution?    

SORT  You are given the mass of KBr and the volume of a solution 
and asked to fnd its molarity.

GIVEN: 25.5 g KBr, 1.75 L of solution
FIND:  molarity (M)

STRATEGIZE  When formulating the conceptual plan, think about the 
defnition of molarity: the amount of solute in moles per liter of solution.
You are given the mass of KBr, so frst use the molar mass of KBr to 
convert from g KBr to mol KBr.

Ten use the number of moles of KBr and liters of solution to fnd the 
molarity.

CONCEPTUAL PLAN

g KBr mol KBr

mol KBr, L solution Molarity

1 mol
119.00 g

amount of solute (in mol)
Molarity (M) =

volume of solution (in L)

RELATIONSHIPS USED
molar mass of KBr = 119.00 g/mol

SOLVE  Follow the conceptual plan. Begin with g KBr and convert to 
mol KBr; then use mol KBr and L solution to calculate molarity.

SOLUTION

25.5 g KBr *
1 mol KBr

119.00 g KBr = 0.21429 mol KBr

 molarity (M) =
amount of solute (in mol)
volume of solution (in L)

 =
0.21429 mol KBr
1.75 L solution

 = 0.122 M

CHECK  Te units of the answer (M) are correct. Te magnitude is reasonable since common solutions range in concentration from 0 to 
about 18 M. Concentrations signifcantly above 18 M are suspect and should be double-checked.

FOR PRACTICE 9.1

Calculate the molarity of a solution made by adding 45.4 g of NaNO3 to a fask and dissolving it with water to create a total volume of 2.50 L.
FOR MORE PRACTICE 9.1

What mass of KBr (in grams) do you need to make 250.0 mL of a 1.50 M KBr solution?

Two-Column Example

The general procedure 

is shown in the left column.

A four-part structure  

(“Sort, Strategize, 

Solve, Check”) provides 

you with a framework 

for analyzing and solving 

problems.

Every Worked Example 

is followed by “For 

Practice” Problems  

that you can try to solve  

on your own. Answers to  

“For Practice” Problems  

are in Appendix VI

Many problems are solved with a conceptual plan that 

provides a visual outline of the steps leading from the given 

information to the solution.

The right column shows the 

implementation of the steps 

explained in the left column
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Learning Catalytics™ is a  
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engagement, assessment, and 

classroom intelligence system.  

With Learning Catalytics™  
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open-ended tasks to probe student 
understanding. 

students are and adjust your lecture 
accordingly. 

thinking skills.

understand student performance. 

Learning Catalytics™ fit your 
course exactly.

intelligent grouping and timing. 

Learning Catalytics™ is a 

technology that has grown 

out of twenty years of cutting 

edge research, innovation, and 
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teaching and peer instruction.

Learning Catalytics™ is included 

with the purchase of Mastering 

with eText. Students purchasing 

Mastering without eText will be  

able to upgrade their Mastering 

accounts to include access to 

Learning Catalytics™. 

Instructors using Learning 

Catalytics™ in conjunction with 

MasteringChemistry® will be 

able to select publisher provided 

questions specific to each course.



Adaptive Follow-up Assignments 
in MasteringChemistry®

Instructors are given the ability to assign  

adaptive follow-up assignments to students  

for Chemistry: Structure and  

Properties. Content delivered to  

students as part of adaptive  

learning will automatically be  

personalized for each individual  

based on strengths and weaknesses  

as identified by his or her  

performance on Mastering  

parent assignments.

Dynamic Study Modules

NEW! Dynamic Study Modules, 

designed to enable students to study 

effectively on their own as well as help 

students quickly access and learn the 

nomenclature they need to be more 

successful in chemistry. These modules 

can be accessed on smartphones, tablets, 

and computers and results can be 

tracked in the MasteringChemistry® 
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CHAPTER

1
“It will be found that 

everything depends on the 

composition of the forces 

with which the particles of 

matter act upon one 

another; and from these 

forces...all phenomena of 

nature take their origin.”

—Roger Joseph Boscovich  
(1711–1787)

Water, like all matter, is composed of atoms. The atoms are bound together to form a 
molecule. The structure of the molecule determines the properties of water.



3

W HAT DO YOU THINK is the most powerful 

idea in all of human knowledge? There 

are, of course, many possible answers to 

this question—some practical, some philosophical, and 

some scientific. If we limit ourselves only to scientific 

answers, mine would be this: The properties of matter are 

determined by the structure of the atoms and molecules 

that compose it. Atoms and molecules determine how 

matter behaves—if they were different, matter would be 

different. The structure of helium atoms determines how 

helium behaves; the structure of water molecules determines how water behaves; and the 

structures of the molecules that compose our bodies determine how our bodies behave. The 

understanding of matter at the particulate level gives us unprecedented control over that 

matter. For example, our understanding of the details of the molecules that compose living 

organisms has revolutionized biology over the last 50 years.

1.1 A Particulate View of the World: 
Structure Determines Properties 3

1.2 Classifying Matter: A Particulate 
View 4

1.3 The Scientific Approach to 
Knowledge 7

1.4 Early Ideas about the Building Blocks 
of Matter 9

1.5 Modern Atomic Theory and the Laws 
That Led to It 10

1.6 The Discovery of the Electron 13

1.7 The Structure of the Atom 16

1.8 Subatomic Particles: Protons, 
Neutrons, and Electrons 18

1.9 Atomic Mass: The Average Mass of an 
Element’s Atoms 22

1.10 The Origins of Atoms and 
Elements 25

Key Learning Outcomes 27

Atoms

1.1 A Particulate View of the World: Structure  
Determines Properties

A good novel usually has a strong premise—a short statement that describes the central idea of the story. The 
story of chemistry as described in this book also has a strong premise, which consists of two simple statements:

1. Matter is particulate—it is composed of particles.

2. Te structure of those particles determines the properties of matter.

Matter is anything that occupies space and has mass. Most things you can think of—such as this book, 
your desk, and even your body—are composed of matter. The particulate nature of matter—first  

KEY CONCEPT VIDEO 
Structure Determines 
Properties



4 Chapter 1 Atoms 

In chemistry, atoms are often 
portrayed as colored spheres, with 
each color representing a different 
kind of atom. For example, a black 
sphere represents a carbon atom, a 
red sphere represents an oxygen 
atom, and a white sphere represents a  
hydrogen atom. For a complete color 
code of atoms, see Appendix IV A.

conceived in ancient Greece, but widely accepted only about 200 years ago—is the foundation of 
chemistry and the premise of this book.

As an example of this premise, consider water, the familiar substance we all know and depend on 
for life. The particles that compose water are water molecules, which we can represent like this:

Hydrogen
atoms

Oxygen
atom

Water molecule

A water molecule is composed of three atoms: one oxygen atom and two hydrogen atoms. Atoms are 
the basic particles that compose ordinary matter, and about 91 different types of atoms naturally 
exist. Atoms often bind together in specific geometrical arrangements to form molecules, as we see 
in water.

The first thing you should know about water molecules—and all molecules—is that they are ex-
tremely small, much too small to see with even the strongest optical microscope. The period at the end 
of this sentence has a diameter of about one-fifth of a millimeter (less than one-hundredth of an inch); 
yet a spherical drop of water with the same diameter as this period contains over 100 million billion 
water molecules.

The second thing you should know about water molecules is that their structure determines the 
properties of water. The water molecule is bent: The two hydrogen atoms and the oxygen atom are not 
in a straight line. If the atoms were in a straight line, water itself would be different. For example, sup-
pose that the water molecule were linear instead of bent:

Hypothetical linear water molecule

If water had this hypothetical structure, it would be a different substance. First of all, linear water would 
have a lower boiling point than normal water (and may even be a gas at room temperture). Just this 
change in shape would cause the attractive forces between water molecules to weaken so that the mol-
ecules would have less of a tendency to clump together as a liquid and more of a tendency to evaporate 
into a gas. In its liquid form, linear water would be quite different than the water we know. It would 
feel more like gasoline or paint thinner than water. Substances that normally dissolve easily in water—
such as sugar or salt—would probably not dissolve in linear water.

The key point here is that the properties of the substances around us radically depend on the struc-
ture of the particles that compose them—a small change in structure, such as a different shape, results 
in a significant change in properties. If we want to understand the substances around us, we must un-
derstand the particles that compose them—and that is the central goal of chemistry. A good simple 
definition of chemistry is:

Chemistry—the science that seeks to understand the properties of matter by studying the 
structure of the particles that compose it.

1.2 Classifying Matter: A Particulate View
Recall from Section 1.1 that matter is anything that occupies space and has mass. A specific instance of 
matter—such as air, water, or sand—is a substance. We can begin to understand the particulate view of 
matter by classifying matter based on the particles that compose it. The first classification—the state of 
matter—depends on the relative positions of the particles and how strongly they interact with one  
another (relative to temperature). The second classification—the composition of matter—depends on 
the types of particles.

Atoms themselves, as we discuss  
later in this chapter, are composed of 
even smaller particles.



1.2 Classifying Matter: A Particulate View 5

The States of Matter: Solid, Liquid, and Gas
Matter can exist in three different states: solid, liquid, and gas (Figure 1.1 ▲). The particles that com-
pose solid matter attract one another strongly and therefore pack close to each other in fixed locations. 
Although the particles vibrate, they do not move around or past each other. Consequently, a solid has a 
fixed volume and rigid shape. Ice, aluminum, and diamond are good examples of solids.

The particles that compose liquid matter pack about as closely as particles do in solid matter, but 
slightly weaker attractions between the particles allow them to move relative to each other, giving liq-
uids a fixed volume but not a fixed shape. Liquids assume the shape of their container. Water, alcohol, 
and gasoline are examples of substances that are liquids at room temperature.

The particles that compose gaseous matter attract each other only very weakly—so weakly that 
they do not clump together as particles do in a liquid or solid. Instead the particles are free to move 
large distances before colliding with one another. The large spaces between the particles make gases 
compressible (Figure 1.2 ▼). When you squeeze a balloon or sit down on an air mattress, you force the 

Solid matter Gaseous matterLiquid matter

◀ FIGURE 1.1 The States of 
Matter In a solid, the composite 
particles are fixed in place and can 
only vibrate. In a liquid, although the 
particles are closely packed, they can 
move past one another, allowing the 
liquid to flow and assume the shape 
of its container. In a gas, the particles 
are widely spaced, making gases 
compressible as well as fluid (able to 
flow).

Solid–not compressible Gas–compressible

◀ FIGURE 1.2 The Compressibility 
of Gases Gases can be 
compressed—squeezed into a 
smaller volume—because there is so 
much empty space between atoms 
or molecules in the gaseous state.

The state of matter changes from  
solid to liquid to gas with increasing 
temperature.

The discussion here assumes that the 
three samples of matter are all at the 
same fixed temperature. At this 
temperature, strong attractions 
between particles favor the solid state 
and weak attractions between 
particles favor the gas state.


